

Available online at www.sciencedirect.com

Journal of Catalysis 228 (2004) 259-263

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

Dissociative adsorption of HCOOH, CH₃OH, and CH₂O on MCM-41

Research Note

Meng-Tso Chen, Yi-Shiue Lin, Yu-Feng Lin, Hong-Ping Lin, Jong-Liang Lin*

Department of Chemistry, National Cheng Kung University 1, Ta Hsueh Road, Tainan, Taiwan 701, Republic of China

Received 8 May 2004; revised 23 July 2004; accepted 17 August 2004

Available online 25 September 2004

Abstract

Adsorption and surface reactions of HCOOH, CH_3OH , and CH_2O on siliceous mesoporous MCM-41 have been investigated by Fouriertransform infrared spectroscopy. CH_2O decomposes on the surface to form adsorbed CH_3O and HCOO (an analog of Cannizzaro disproportionation) which are identified by dissociative adsorption of CH_3OH and HCOOH. In addition, CH_3OH is sequentially oxidized to CH_2O and HCOO on MCM-41. These types of reactions for CH_2O and CH_3OH on MCM-41 have not been observed on amorphous SiO_2 without a mesoporous structure.

© 2004 Elsevier Inc. All rights reserved.

Keywords: HCOOH; CH₃OH; CH₂O; Adsorption; MCM-41

1. Introduction

Fully hydroxylated SiO₂ surfaces are generally catalytically inert [1,2]. SiO₂ surface activities can been enhanced by chemical modifications or thermal treatment. In the former case, surface active sites are created by incorporating heteroatoms [3,4] or surface functional groups [5–8]. Thermal treatment for SiO2 activation results from loss of silanol groups which may exist in isolated, geminal, or hydrogenbonded forms [9]. The active sites generated thermally are capable of dissociative chemisorption reactions of CH₃OH and C₂H₅OH forming the alkoxides [10,11], hydrogendeuterium exchange [12], dehydrogenation of n-heptane into heptene and heptadienes and dehydrocyclization into toluene [13], and ammoximation of ketones to oximes [14], etc. In addition, mesoporous siliceous FSM-16 catalyzes α pinene isomerization and methylamine synthesis after thermal activation [15].

Here, we examine the dissociative chemisorption of CH₃OH, CH₂O, and HCOOH on mesoporous siliceous MCM-41 by Fourier-transform infrared spectroscopy. It is found that CH₃OH and HCOOH are dissociatively adsorbed

* Corresponding author. E-mail address: jonglin@mail.ncku.edu.tw (J.-L. Lin).

0021-9517/\$ – see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2004.08.025

to form CH₃O and HCOO on the surface at 35 °C, respectively. Most interestingly, as CH₂O is adsorbed on the surface at 35 °C, both CH₃O and HCOO are generated. This is an analog of the Cannizzaro reaction in which aldehydes containing no α -hydrogens undergo self-oxidation and reduction to yield a mixture of an alcohol and a carboxylate in strong, basic solutions [16].

2. Experimental

MCM-41 used in the present study was prepared using a procedure as described previously [17], with an average particle size of ~ 70 nm, a pore size of 2.23 nm, a pore volume of 2.01 cm³ g⁻¹, and a surface area of 1216 m² g⁻¹. The MCM-41 powder was dispersed in deionized water (18.3 M Ω cm) and then sprayed onto a tungsten fine mesh (~ 6 cm²) held in a pair of stainless steal clamps which were attached to the power leads of a power/thermocouple feedthrough [18]. After that, the SiO₂/W sample was mounted inside an IR cell [19], with two CaF₂ windows for IR transmission, which was connected to a gas manifold and pumped by a 60 L s⁻¹ turbomolecular pump with a base pressure of ~ 1 × 10⁻⁷ Torr. The SiO₂/W sample in the cell was heated to 500 °C un-

der vacuum for 24 h resistively by passing electric current through the tungsten mesh. The temperature of SiO₂/W sample was measured by a K-type thermocouple spot-welded on the tungsten mesh. Before each run of the experiment, the SiO₂/W sample was heated to 350 °C for 20 min in 3 Torr O₂ and then heated to 500 °C in a vacuum for 2 h. After the heating treatment, 10 Torr of O₂ was introduced into the cell as the sample was cooled to 70 $^{\circ}$ C. When the SiO₂ temperature reached 35 °C, the cell was evacuated for gas dosing. O₂ (99.998%, Matheson) was used as received in compressed states. CH₃OH (99.8%, Merck), CH₂O (37% aqueous solution, J.T. Baker), and HCOOH (> 98%, Merck) were purified by several cycles of freeze-pump-thaw. CH₂O was introduced to the cell as the solution was cooled to $\sim 3 \,^{\circ}\text{C}$ to reduce the solubility of CH₂O in water and the evaporation of water molecules. Pressure was monitored with a Baratron capacitance manometer and an ion gauge. Infrared spectra were obtained with a 4 cm^{-1} resolution by a Bruker FTIR spectrometer with a MCT detector. The entire optical path was purged with CO₂-free dry air. The spectra presented here have been ratioed against a clean SiO₂ spectrum providing the oxide background.

3. Results and discussion

We present the infrared spectroscopic results of dissociative adsorption on MCM-41 in the order of HCOOH, CH₃OH, and CH₂O. Fig. 1 shows the infrared spectra of a MCM-41 surface after being in contact with ~ 0.5 Torr of HCOOH at 35 °C, followed by evacuation at the indicated temperatures for 1 min. In the 35 °C spectrum, the infrared bands appear at 1362, 1375, 1609, 1721, 2721, 2821, and 2947 cm⁻¹. The 1721 cm⁻¹ is assigned to carbonvl (C=O) stretching vibration, revealing the presence of molecularly adsorbed HCOOH. This C=O stretching frequency is 19 cm^{-1} lower than that of HCOOH in the gas phase [20] and is ascribed to the interaction between surface acidic sites with the lone-pair electrons on the carbonyl oxygen atom or with the π -bond electrons. The surface formic acid molecules are completely removed after heating the surface to 300 °C in a vacuum, as indicated by the disappearance of the 1721 cm⁻¹ band in the 300 °C spectrum, presumably due to desorption and/or dissociation. The other bands at 1362, 1375, 1609, 2721, 2821, and 2947 cm⁻¹ are still barely observable in the 400 °C spectrum, although their intensities decrease simultaneously after heating the surface higher than 150 °C. These bands are attributed to formate species (HCOO) adsorbed on the MCM-41 surface, based on the similar absorptions of HCOO on various metal-oxide surfaces as shown in Table 1. Furthermore, because the difference between the antisymmetric and symmetric -COOstretching vibrations of HCOO on MCM-41 is 236 cm⁻¹ which is larger than that of ionic HCOO ($\sim 200 \text{ cm}^{-1}$), it suggests that HCOO is adsorbed on MCM-41 with a unidentate or bridging configuration [23].

Fig. 1. Infrared spectra of a MCM-41 surface exposed to ~ 0.5 Torr HCOOH and then evacuated at the indicated temperatures for 1 min. All the spectra were recorded with 50 scans at 35 °C.

Fig. 2 shows the infrared spectra of a MCM-41 surface after being in contact with ~ 0.9 Torr of CH₃OH at 35 °C, followed by evacuation at the indicated temperatures for 1 min. In the 35 °C spectrum, the infrared bands appear at 1388, 1453, 1466, 1609, 1716, 2836, 2856, 2922, 2959, and 2994 cm^{-1} . The 1716 cm^{-1} band attributed to the carbonyl stretching mode shows that oxidation of methanol occurs upon its adsorption. The result of CH2O adsorption on MCM-41, shown later, reveals that CH₃OH is oxidized to form CH₂O on the surface. On the other hand, the bands at 1388 and 1609 cm^{-1} agree with HCOO_(a) absorptions, as demonstrated in Fig. 1. The 1609 cm^{-1} band grows at the expense of the 1716 cm^{-1} band after heating the surface to 100 °C, suggesting the transformation of CH₂O_(a) into HCOO_(a). This sequential oxidation process of $CH_3OH \rightarrow CH_2O \rightarrow HCOO$ on MCM-41 is distinct from CH₃OH adsorption on other SiO₂ without a mesoporous structure [10,24]. For example, CH₃OH is dissociatively adsorbed to form CH₃O on nonmesoporous SiO₂ (Degussa, Aerosil) at room temperature [10]. In Fig. 2, the adsorbed HCOO does not exist on the surface after raising the temperature to 400 °C, as indicated by the disappearance of the 1609 cm^{-1} band. In the 400 °C spectrum, the infrared bands are located at 1387, 1465, 1487, 2859, 2932, 2960, and 2999 cm⁻¹ which are similar to the previously observed infrared frequencies from CH₃OH dissociative adsorption on nonmesoporous SiO₂ [10,24], as shown in Table 2. There-

Table 1 Comparison of the infrared frequencies (cm⁻¹) of HCOO on various oxide surfaces

Al ₂ O ₃ ^a	ThO ₂ ^a	ZrO ₂ ^a	TiO ₂ ^a	TiO ₂ ^b	MgO ^a	Fe ₂ O ₃ ^a	SiO_2^{c} (MCM-41)	Mode
2970	2950	2965	2970	2977	2930	2960		$v_{a}(CO_{2}) + \delta(CH)$
			2950	2952			2947	
2905	2850	2865	2885	2872	2860	2880	2821	ν(CH)
			2880		2810			
2750	2740	2755	2730	2754	2770		2721	$\nu_{\rm s}({\rm CO}_2) + \delta({\rm CH})$
		2740			2735			
1595	1580	1570	1575	1552	1630	1565	1609	$\nu_a(CO_2)$
	1565		1560		1605			
1395	1375	1390	1390	1413	1395			$\delta(CH)$
			1380	1386	1383	1378		
1380	1365	1375	1372	1370	1370	1350	1375	$\nu_{\rm s}({\rm CO}_2)$
			1360	1359	1340		1362	_

 δ , deformation; ν_s , symmetric stretching; ν_a , antisymmetric stretching.

^b Ref. [22].

^c This work.

Fig. 2. Infrared spectra of a MCM-41 surface exposed to ~ 0.9 Torr CH₃OH and then evacuated at the indicated temperatures for 1 min. All the spectra were recorded with 50 scans at 35 °C.

fore these bands are attributed to CH_3O on MCM-41. It is concluded that CH_3OH decomposes to form CH_3O , CH_2O , and HCOO on MCM-41 at 35 °C.

Fig. 3 shows the infrared spectra of a MCM-41 surface after being in contact with ~ 1 Torr CH₂O at 35 °C, followed by evacuation at the indicated temperatures for 1 min. In the 35 °C spectrum, the infrared bands appear at 1376, 1406, 1455, 1610, 1718, 2820, 2839, 2854, 2919, 2952, and

Table 2 Comparison of the infrared frequencies (cm^{-1}) of CH₃O on nonmesoporous SiO₂ and on MCM-41

Nonmesoporo	us SiO ₂	MCM-41	Assignment	
Ref. [10]	Ref. [24]	(this work)	(Ref. [25])	
3001		2999	$v_a(CH_3)$	
2961	2956	2960		
2937		2932	$2\delta(CH_3)$	
2859	2852	2859	$\nu_{\rm s}({\rm CH}_3)$	
2838				
1481	1470	1487		
1466	1452	1465	$\delta(CH_3)$	
	1390	1387		

 δ , deformation; ν_s , symmetric stretching; ν_a , antisymmetric stretching.

 3002 cm^{-1} . The carbonyl 1718 cm⁻¹ band demonstrates the presence of adsorbed CH₂O which is removed from the surface after heating to 150 °C. Compared to the C=O stretching absorption at 1744 cm⁻¹ for free CH₂O molecules [20], it suggests that CH₂O on MCM-41 interacts with the surface via its carbonyl group, resulting in the C=O red shift. In fact, two more infrared bands at 1501 and 1725 cm^{-1} were also observed as the MCM-41 was in contact with \sim 1 Torr CH₂O vapor, but they disappeared after evacuation. The previously reported infrared bands of CH₂O on nonmesoporous SiO₂ (Degussa, Aerosil), preheated to 873 K in a vacuum, appeared at 1501, 1717, 1725, 2732, 2830, 2894, and 2995 cm⁻¹ at 180 K [21]. The bands at 1376, 1610, and 2820 cm⁻¹ in the 35 °C spectrum of Fig. 3 are attributed to HCOO_(a), as supported by the HCOOH dissociative adsorption shown in Fig. 1. Another set of bands at 1455, 2854, 2952, and 3002 cm^{-1} is consistent with CH₃O_(a) absorptions as shown in Fig. 2. CH₂O on MCM-41 oxidizes and reduces simultaneously to form HCOO(a) and CH₃O(a) at 35 °C. This is a heterogeneous Cannizzaro-type disproportionation which has been observed on the ionic oxides of MgO, ZrO₂, ThO₂, Al₂O₃, TiO₂, and Fe₂O₃ from CH₂O adsorption, but not on SiO₂ without a mesoporous structure [21]. The first

^a Ref. [21].

Fig. 3. Infrared spectra of a MCM-41 surface exposed to ~ 1 Torr CH₂O and then evacuated at the indicated temperatures for 1 min. All the spectra were recorded with 50 scans at 35 °C.

three metal oxides have predominantly a basic character, in contrast to the acidic character of the last three [21]. CH₂O polymerizes on nonmesoporous SiO₂ [21], Pt/Cu/SiO₂ [26], and H₃PMo₁₂O₄₀/SiO₂ [27] at room temperature. In the first case, -[CH2-O]n- was reported to absorb at 1385, 1425, 1480, 2915, and 2980 cm⁻¹. Therefore the 1406 cm⁻¹ band in the 35 °C spectrum of Fig. 3 is tentatively assigned to polymerized CH₂O. The adsorbed and polymerized CH₂O on MCM-41 are no more observed in the 200 °C spectrum. CH₃O_(a) and HCOO_(a) are still present on the surface heated to 400 °C. Recently in a study of acetalization of cyclohexanone with methanol, it is reported that MCM-41 evacuated at 60 °C is more reactive than that evacuated at higher temperatures [28]. Therefore, we carried out an experiment of CH₂O adsorption on a low-temperature MCM-41 sample which was prepared by spraying dispersed MCM-41 on a tungsten mesh and then holding the MCM-41/W sample in a vacuum at 60 °C, instead of 500 °C, for 24 h. The infrared study showed that the low-temperature MCM-41 sample was fully hydroxylated, as indicated by strong OH infrared absorptions between ~ 3000 and 3800 cm⁻¹. CH₂O adsorption on the MCM-41 mainly generated CH_3O at 1453 cm⁻¹, but the HCOO bands at 1376 and 1610 cm^{-1} were either not seen or very small. Apparently, reactions of CH₂O on MCM-41 are sensitive to the surface active sites.

In the present study, MCM-41, preheated to $500 \,^{\circ}\text{C}$ in a vacuum, catalyzes a sequential oxidation of CH₃OH

 $(CH_3OH \rightarrow CH_2O \rightarrow HCOO)$ and a Cannizzaro-type reaction of CH_2O (2 $CH_2O \rightarrow CH_3O + HCOO$) which has not been observed on nonmesoporous siliceous materials. We now discuss the possible surface reactive sites for these reactions. Dehydroxylation of SiO₂ by thermal treatment can produce asymmetrically strained siloxane bridge sites [29]. It has been reported that this sites provide both acidic (electron-deficient Si atoms) and basic (bridging oxygen atoms) characters. For example, the bridged oxygen atoms of the strained siloxane sites can be attacked by the electrondeficient boron atom of BF₃, forming SiOBF₂ species [30]. In the study of methylamine synthesis catalyzed by siliceous mesoporous FSM-16, which exhibits a similar structure to MCM-41, it is postulated that the active sites are the Si atoms with enhanced strength of Lewis acidity due to a prolonged Si–O bond in strained siloxane bridge sites [15]. As a contrast, amorphous SiO2 without a mesoporous structure can hardly catalyze the methylamine synthesis [15]. The recent study of the active sites on mesoporous siliceous materials suggests that strained siloxane bridge sites may be related to \equiv Si-O· radical sites [31]. As a matter of fact, radical species has been invoked to explain the transformation of CH₃OH to CH₂O on γ -irradiated SiO₂ surface [32]. Structural characteristics of mesoporous SiO2 can also affect their reactivities. MCM-41 and SBA-15 siliceous materials have the same p6mm hexagonal mesostructure, but they are different with respect to wall thickness, pore shape, and pore size [33]. Comparison of adsorption of the molecules, investigated in present study, on these two mesoporous SiO_2 may provide more insight into the effect of structural features.

4. Conclusions

Scheme 1 summarizes the dissociative adsorption of HCOOH, CH_3OH , and CH_2O on MCM-41 at 35 °C. In this scheme, asymmetrically strained siloxane bridge sites are assumed to be the active centers. Decomposition of HCOOH and CH_3OH can generate silanol (Si–OH) groups, but they are not shown in Scheme 1. Adsorbed HCOO on MCM-41 is assumed to adopt a unidentate configuration. A bridging configuration is also possible.

Scheme 1.

Acknowledgment

This research was supported by the National Scicence Council of the Republic of China (NSC 92-2113-M-006-016).

References

- K. Tanabe, M. Misono, Y. Ono, H. Hattori, New Solid Acids and Bases, Kodansha, Elsevier, Tokyo, 1989.
- [2] L.H. Dubois, B.R. Zegarski, J. Phys. Chem. 97 (1993) 1665.
- [3] A. Corma, Chem. Rev. 97 (1997) 2373.
- [4] J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem., Int. Ed. Engl. 38 (1999) 56.
- [5] D. Brunel, Micropor. Mesopor. Mater. 27 (1999) 329.
- [6] R. Anwander, I. Nagl, M. Widenmeyer, G. Engekhardt, O. Groeger, C. Palm, T. Röser, J. Phys. Chem. B 104 (2000) 3532.
- [7] J.K.A. Dapaah, Y. Uemichi, A. Ayame, H. Matsuhashi, M. Sugioka, Chem. Lett. (2002) 604.
- [8] Y. Inaki, Y. Kajita, H. Yoshida, K. Ito, T. Hattori, Chem. Commun. (2001) 2358.
- [9] H.-P. Boehm, H. Knözinger, in: J.R. Anderson, M. Boudart (Eds.), Catalysis-Science Technology, vol. 4, Springer, Berlin, 1983, Chap. 2.
- [10] E.A. Wovchko, J.C. Camp, J.A. Glass, J.T. Yates Jr., Langmuir 11 (1995) 2592.
- [11] Y. Matsumura, E. Hashimoto, S. Yoshida, J. Catal. 117 (1989) 135.
- [12] E.W. Bittner, B.C. Bockrath, J.M. Solar, J. Catal. 149 (1994) 206.
- [13] M. Lacroix, G.M. Pajonk, S.J. Teichner, J. Catal. 101 (1986) 314.
- [14] J.N. Armor, P.M. Zambri, J. Catal. 73 (1982) 57.
- [15] T. Yamamota, T. Tanaka, S. Inagaki, T. Funabiki, S. Yoshida, J. Phys. Chem. B 103 (1999) 6450.

- [16] P.Y. Bruice, Organic Chemistry, Prentice-Hall, Upper Saddle River, NJ, 1998, p. 856.
- [17] H.-P. Lin, C.-P. Tsai, Chem. Lett. 32 (2003) 1092.
- [18] P. Basu, T.H. Ballinger, J.T. Yates Jr., Rev. Sci. Instrum. 59 (1998) 1321.
- [19] J.C.S. Wong, A. Linsebigler, G. Lu, J. Fan, J.T. Yates Jr., J. Phys. Chem. 99 (1995) 335.
- [20] G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945.
- [21] G. Busca, J. Lamotte, J.-C. Lavalley, V. Lorenzelli, J. Am. Chem. Soc. 109 (1987) 5197.
- [22] C.-C. Chuang, W.-C. Wu, M.-C. Huang, I.-C. Huang, J.-L. Lin, J. Catal. 185 (1999) 423.
- [23] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.
- [24] S. Carlos-Cuellar, P. Li, A.P. Christensen, B.J. Krueger, C. Burrichter, V.H. Grassian, J. Phys. Chem. A 107 (2003) 4250.
- [25] A.G. Pelmenschikov, G. Morosi, A. Gamba, A. Zecchina, S. Bordiga, E.A. Paukshtis, J. Phys. Chem. 97 (1993) 11979.
- [26] G.J. Millar, C.H. Rochester, K.C. Waugh, J. Catal. 155 (1995) 52.
- [27] G.Y. Popova, A.A. Budneva, T.V. Andrushkevish, React. Kinet. Catal. Lett. 62 (1997) 97.
- [28] M. Iwamoto, Y. Tanaka, N. Sawamura, S. Namba, J. Am. Chem. Soc. 125 (2003) 13032.
- [29] B.A. Morrow, I.A. Cody, J. Phys. Chem. 80 (1976) 1995.
- [30] B.A. Morrow, A. Devi, J. Chem. Soc., Faraday Trans. 1 68 (1972) 403.
- [31] Y. Inaki, H. Yoshida, T. Yoshida, T. Hattori, J. Phys. Chem. 106 (2002) 9098.
- [32] E. Novak, A. Hancz, A. Erdohelyi, Radia. Phys. Chem. 66 (2003) 27.
- [33] H.-P. Lin, C.-Y. Tang, C.-Y. Lin, J. Chin. Chem. Soc. 49 (2002) 981.